Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 12(1): 269, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37953314

RESUMO

Several image-based biomedical diagnoses require high-resolution imaging capabilities at large spatial scales. However, conventional microscopes exhibit an inherent trade-off between depth-of-field (DoF) and spatial resolution, and thus require objects to be refocused at each lateral location, which is time consuming. Here, we present a computational imaging platform, termed E2E-BPF microscope, which enables large-area, high-resolution imaging of large-scale objects without serial refocusing. This method involves a physics-incorporated, deep-learned design of binary phase filter (BPF) and jointly optimized deconvolution neural network, which altogether produces high-resolution, high-contrast images over extended depth ranges. We demonstrate the method through numerical simulations and experiments with fluorescently labeled beads, cells and tissue section, and present high-resolution imaging capability over a 15.5-fold larger DoF than the conventional microscope. Our method provides highly effective and scalable strategy for DoF-extended optical imaging system, and is expected to find numerous applications in rapid image-based diagnosis, optical vision, and metrology.

2.
Opt Express ; 22(6): 6511-8, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24663999

RESUMO

In this study, we propose a two-dimensional (2D) dielectric structure tailored by a systematic design approach on the exit side of a metallic aperture to enhance the off-axis electromagnetic (EM) wave. We adopted a phase field method based topology optimization scheme and designed an arbitrary 2D dielectric structure in order to steer outward beaming through an aperture to a specific direction. Beyond previous one-dimensional structure, we proposed an arbitrary 2D dielectric structure through the introduced design process defining not only x- but also y-directional dielectric structural boundaries simultaneously and experimentally confirmed enhanced EM wave transmission to a desired direction.

3.
Plant Mol Biol ; 77(6): 631-41, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22038138

RESUMO

Development of specialized epidermal cells and structures plays a key role in plant tolerance to biotic and abiotic stresses. In the paddy field, the bright green leaf (bgl) mutants of rice (Oryza sativa) exhibit a luminous green color that is clearly distinguishable from the normal green of wild-type plants. Transmission and scanning electron microscopy revealed that small cuticular papillae (or small papillae; SP), nipple-like structures, are absent on the adaxial and abaxial leaf surfaces of bgl mutants, leading to more direct reflection and less diffusion of green light. Map-based cloning revealed that the bgl locus encodes OsRopGEF10, one of eleven OsRopGEFs in rice. RopGEFs (guanine nucleotide exchange factors for Rop) activate Rop/Rac GTPases, acting as molecular switches in eukaryotic signal transduction by replacing the bound GDP (inactive form) with GTP (active form) in response to external or internal cues. In agreement with the timing of SP initiation on the leaf epidermis, OsRopGEF10 is most strongly expressed in newly developing leaves before emergence from the leaf sheath. In yeast two-hybrid assays, OsRopGEF10 interacts with OsRac1, one of seven OsRac proteins; consistent with this, both proteins are localized in the plasma membrane. These results suggest that OsRopGEF10 activates OsRac1 to turn on the molecular signaling pathway for SP development. Together, our findings provide new insights into the molecular genetic mechanism of SP formation during early leaf morphogenesis.


Assuntos
Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Oryza/genética , Oryza/ultraestrutura , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/ultraestrutura , Reação em Cadeia da Polimerase
4.
Plant J ; 62(4): 713-25, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20202171

RESUMO

The zebra-necrosis (zn) mutant of rice (Oryza sativa) produces transversely green/yellow-striped leaves. The mutant phenotype is formed by unequal impairment of chloroplast biogenesis before emergence from the leaf sheath under alternate light/dark or high/low temperatures (restrictive), but not under constant light and temperature (permissive) conditions. Map-based cloning revealed that ZN encodes a thylakoid-bound protein of unknown function. Virus-induced gene silencing of a ZN homolog in Nicotiana benthamiana causes leaf variegation with sporadic green/yellow sectors, indicating that ZN is essential for chloroplast biogenesis during early leaf development. Necrotic lesions often occur in the yellow sectors as a result of an excessive accumulation of reactive oxygen species (ROS). The phenotypic severity (leaf variegation and necrosis) and ROS levels are positively correlated with an increase in light intensity under restrictive conditions. In the mutant leaves, chlorophyll (Chl) metabolism, ROS scavenging activities, maximum quantum yield of photosystem II (PSII), and structures and functions of the photosynthetic complexes are normal in the Chl-containing cells, suggesting that ROS are mainly generated from the defective plastids of the Chl-free cells. The PSII activity of normal chloroplasts is hypersensitive to photoinhibition because the recovery rates of PSII are much slower. In the PSII repair, the degradation of damaged D1 is not impaired, suggesting a reduced activity of new D1 synthesis, possibly because of higher levels of ROS generated from the Chl-free cells by excess light. Together, we propose that ZN is required for protecting developing chloroplasts, especially during the assembly of thylakoid protein complexes, from incidental light after darkness.


Assuntos
Cloroplastos/efeitos da radiação , Oryza/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Clorofila/metabolismo , Cloroplastos/metabolismo , Clonagem Molecular , Inativação Gênica , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Oryza/genética , Oryza/efeitos da radiação , Fenótipo , Complexo de Proteína do Fotossistema II/metabolismo , Mapeamento Físico do Cromossomo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Tilacoides/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/efeitos da radiação
5.
Mol Cells ; 24(1): 83-94, 2007 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-17846502

RESUMO

During monocarpic senescence in higher plants, functional stay-green delays leaf yellowing, maintaining photosynthetic competence, whereas nonfunctional stay-green retains leaf greenness without sustaining photosynthetic activity. Thus, functional stay-green is considered a beneficial trait that can increase grain yield in cereal crops. A stay-green japonica rice 'SNU-SG1' had a good seed-setting rate and grain yield, indicating the presence of a functional stay-green genotype. SNU-SG1 was crossed with two regular cultivars to determine the inheritance mode and identify major QTLs conferring stay-green in SNU-SG1. For QTL analysis, linkage maps with 100 and 116 DNA marker loci were constructed using selective genotyping with F2 and RIL (recombinant inbred line) populations, respectively. Molecular marker-based QTL analyses with both populations revealed that the functional stay-green phenotype of SNU-SG1 is regulated by several major QTLs accounting for a large portion of the genetic variation. Three main-effect QTLs located on chromosomes 7 and 9 were detected in both populations and a number of epistatic-effect QTLs were also found. The amount of variation explained by several digenic interactions was larger than that explained by main-effect QTLs. Two main-effect QTLs on chromosome 9 can be considered the target loci that most influence the functional stay-green in SNU-SG1. The functional stay-green QTLs may help develop low-input high-yielding rice cultivars by QTL-marker-assisted breeding with SNU-SG1.


Assuntos
Oryza/genética , Folhas de Planta/genética , Locos de Características Quantitativas/genética , Clorofila/análise , Mapeamento Cromossômico , Oryza/crescimento & desenvolvimento , Fotossíntese/fisiologia , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento
6.
Plant Mol Biol ; 62(3): 325-37, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16915519

RESUMO

Photosynthetic organisms exhibit a green color due to the accumulation of chlorophyll pigments in chloroplasts. Mg-protoporphyrin IX chelatase (Mg-chelatase) comprises three subunits (ChlH, ChlD and ChlI) and catalyzes the insertion of Mg(2+) into protoporphyrin IX, the last common intermediate precursor in both chlorophyll and heme biosyntheses, to produce Mg-protoporphyrin IX (MgProto). Chlorophyll deficiency in higher plants results in chlorina (yellowish-green) phenotype. To date, 10 chlorina (chl) mutants have been isolated in rice, but the corresponding genes have not yet been identified. Rice Chl1 and Chl9 genes were mapped to chromosome 3 and isolated by map-based cloning. A missense mutation occurred in a highly conserved amino acid of ChlD in the chl1 mutant and ChlI in the chl9 mutant. Ultrastructural analyses have revealed that the grana are poorly stacked, resulting in the underdevelopment of chloroplasts. In the seedlings fed with aminolevulinate-dipyridyl in darkness, MgProto levels in the chl1 and chl9 mutants decreased up to 25% and 31% of that in wild-type, respectively, indicating that the Mg-chelatase activity is significantly reduced, causing the eventual decrease in chlorophyll synthesis. Furthermore, Northern blot analysis indicated that the nuclear genes encoding the three subunits of Mg-chelatase and LhcpII in chl1 mutant are expressed about 2-fold higher than those in WT, but are not altered in the chl9 mutant. This result indicates that the ChlD subunit participates in negative feedback regulation of plastid-to-nucleus in the expression of nuclear genes encoding chloroplast proteins, but not the ChlI subunit.


Assuntos
Clorofila/biossíntese , Cloroplastos , Genes de Plantas , Liases/genética , Oryza/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , DNA Complementar , Liases/química , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutação , Oryza/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...